149 research outputs found

    Evolutionary history of the Nesophontidae, the last unplaced Recent mammal family

    Get PDF
    The mammalian evolutionary tree has lost several major clades through recent human-caused extinctions. This process of historical biodiversity loss has particularly affected tropical island regions such as the Caribbean, an area of great evolutionary diversification but poor molecular preservation. The most enigmatic of the recently extinct endemic Caribbean mammals are the Nesophontidae, a family of morphologically plesiomorphic lipotyphlan insectivores with no consensus on their evolutionary affinities, and which constitute the only major recent mammal clade to lack any molecular information on their phylogenetic placement. Here, we use a palaeogenomic approach to place Nesophontidae within the phylogeny of recent Lipotyphla. We recovered the near-complete mitochondrial genome and sequences for 17 nuclear genes from a ∌750-year-old Hispaniolan Nesophontes specimen, and identify a divergence from their closest living relatives, the Solenodontidae, more than 40 million years ago. Nesophontidae is thus an older distinct lineage than many extant mammalian orders, highlighting not only the role of island systems as “museums” of diversity that preserve ancient lineages, but also the major human-caused loss of evolutionary history

    Rapid size change associated with intra-island evolutionary radiation in extinct Caribbean "island-shrews"

    Get PDF
    Background: The Caribbean offers a unique opportunity to study evolutionary dynamics in insular mammals. However, the recent extinction of most Caribbean non-volant mammals has obstructed evolutionary studies, and poor DNA preservation associated with tropical environments means that very few ancient DNA sequences are available for extinct vertebrates known from the region’s Holocene subfossil record. The endemic Caribbean eulipotyphlan family Nesophontidae (“island-shrews”) became extinct ~ 500 years ago, and the taxonomic validity of many Nesophontes species and their wider evolutionary dynamics remain unclear. Here we use both morphometric and palaeogenomic methods to clarify the status and evolutionary history of Nesophontes species from Hispaniola, the second-largest Caribbean island. Results: Principal component analysis of 65 Nesophontes mandibles from late Quaternary fossil sites across Hispaniola identified three non-overlapping morphometric clusters, providing statistical support for the existence of three sizedifferentiated Hispaniolan Nesophontes species. We were also able to extract and sequence ancient DNA from a ~ 750-yearold specimen of Nesophontes zamicrus, the smallest non-volant Caribbean mammal, including a whole-mitochondrial genome and partial nuclear genes. Nesophontes paramicrus (39-47 g) and N. zamicrus (~ 10 g) diverged recently during the Middle Pleistocene (mean estimated divergence = 0.699 Ma), comparable to the youngest species splits in Eulipotyphla and other mammal groups. Pairwise genetic distance values for N. paramicrus and N. zamicrus based on mitochondrial and nuclear genes are low, but fall within the range of comparative pairwise data for extant eulipotyphlan species-pairs. Conclusions: Our combined morphometric and palaeogenomic analyses provide evidence for multiple co-occurring species and rapid body size evolution in Hispaniolan Nesophontes, in contrast to patterns of genetic and morphometric differentiation seen in Hispaniola’s extant non-volant land mammals. Different components of Hispaniola’s mammal fauna have therefore exhibited drastically different rates of morphological evolution. Morphological evolution in Nesophontes is also rapid compared to patterns across the Eulipotyphla, and our study provides an important new example of rapid body size change in a small-bodied insular vertebrate lineage. The Caribbean was a hotspot for evolutionary diversification as well as preserving ancient biodiversity, and studying the surviving representatives of its mammal fauna is insufficient to reveal the evolutionary patterns and processes that generated regional diversity

    On the origin of the Norwegian lemming.

    Get PDF
    The Pleistocene glacial cycles resulted in significant changes in species distributions, and it has been discussed whether this caused increased rates of population divergence and speciation. One species that is likely to have evolved during the Pleistocene is the Norwegian lemming (Lemmus lemmus). However, the origin of this species, both in terms of when and from what ancestral taxon it evolved, has been difficult to ascertain. Here, we use ancient DNA recovered from lemming remains from a series of Late Pleistocene and Holocene sites to explore the species' evolutionary history. The results revealed considerable genetic differentiation between glacial and contemporary samples. Moreover, the analyses provided strong support for a divergence time prior to the Last Glacial Maximum (LGM), therefore likely ruling out a postglacial colonization of Scandinavia. Consequently, it appears that the Norwegian lemming evolved from a small population that survived the LGM in an ice-free Scandinavian refugium

    Resolution of the type material of the Asian elephant, Elephas maximus Linnaeus, 1758 (Proboscidea, Elephantidae)

    Get PDF
    The understanding of Earth’s biodiversity depends critically on the accurate identification and nomenclature of species. Many species were described centuries ago, and in a surprising number of cases their nomenclature or type material remain unclear or inconsistent. A prime example is provided by Elephas maximus, one of the most iconic and well-known mammalian species, described and named by Linnaeus (1758) and today designating the Asian elephant. We used morphological, ancient DNA (aDNA), and high-throughput ancient proteomic analyses to demonstrate that a widely discussed syntype specimen of E. maximus, a complete foetus preserved in ethanol, is actually an African elephant, genus Loxodonta. We further discovered that an additional E. maximus syntype, mentioned in a description by John Ray (1693) cited by Linnaeus, has been preserved as an almost complete skeleton at the Natural History Museum of the University of Florence. Having confirmed its identity as an Asian elephant through both morphological and ancient DNA analyses, we designate this specimen as the lectotype of E. maximus

    Museomics Dissects the Genetic Basis for Adaptive Seasonal Coloration in the Least Weasel

    Get PDF
    Dissecting the link between genetic variation and adaptive phenotypes provides outstanding opportunities to understand fundamental evolutionary processes. Here, we use a museomics approach to investigate the genetic basis and evolution of winter coat coloration morphs in least weasels (Mustela nivalis), a repeated adaptation for camouflage in mammals with seasonal pelage color moults across regions with varying winter snow. Whole-genome sequence data were obtained from biological collections and mapped onto a newly assembled reference genome for the species. Sampling represented two replicate transition zones between nivalis and vulgaris coloration morphs in Europe, which typically develop white or brown winter coats, respectively. Population analyses showed that the morph distribution across transition zones is not a by-product of historical structure. Association scans linked a 200-kb genomic region to coloration morph, which was validated by genotyping museum specimens from intermorph experimental crosses. Genotyping the wild populations narrowed down the association to pigmentation gene MC1R and pinpointed a candidate amino acid change cosegregating with coloration morph. This polymorphism replaces an ancestral leucine residue by lysine at the start of the first extracellular loop of the protein in the vulgaris morph. A selective sweep signature overlapped the association region in vulgaris, suggesting that past adaptation favored winter-brown morphs and can anchor future adaptive responses to decreasing winter snow. Using biological collections as valuable resources to study natural adaptations, our study showed a new evolutionary route generating winter color variation in mammals and that seasonal camouflage can be modulated by changes at single key genes

    Genomic basis for skin phenotype and cold adaptation in the extinct Steller’s sea cow

    Get PDF
    Steller’s sea cow, an extinct sirenian and one of the largest Quaternary mammals, was described by Georg Steller in 1741 and eradicated by humans within 27 years. Here, we complement Steller’s descriptions with paleogenomic data from 12 individuals. We identified convergent evolution between Steller’s sea cow and cetaceans but not extant sirenians, suggesting a role of several genes in adaptation to cold aquatic (or marine) environments. Among these are inactivations of lipoxygenase genes, which in humans and mouse models cause ichthyosis, a skin disease characterized by a thick, hyperkeratotic epidermis that recapitulates Steller’s sea cows’ reportedly bark-like skin. We also found that Steller’s sea cows’ abundance was continuously declining for tens of thousands of years before their description, implying that environmental changes also contributed to their extinction

    Genomic insights into the conservation status of the world’s last remaining Sumatran rhinoceros populations

    Get PDF
    Highly endangered species like the Sumatran rhinoceros are at risk from inbreeding. Five historical and 16 modern genomes from across the species range show mutational load, but little evidence for local adaptation, suggesting that future inbreeding depression could be mitigated by assisted gene flow among populations. Small populations are often exposed to high inbreeding and mutational load that can increase the risk of extinction. The Sumatran rhinoceros was widespread in Southeast Asia, but is now restricted to small and isolated populations on Sumatra and Borneo, and most likely extinct on the Malay Peninsula. Here, we analyse 5 historical and 16 modern genomes from these populations to investigate the genomic consequences of the recent decline, such as increased inbreeding and mutational load. We find that the Malay Peninsula population experienced increased inbreeding shortly before extirpation, which possibly was accompanied by purging. The populations on Sumatra and Borneo instead show low inbreeding, but high mutational load. The currently small population sizes may thus in the near future lead to inbreeding depression. Moreover, we find little evidence for differences in local adaptation among populations, suggesting that future inbreeding depression could potentially be mitigated by assisted gene flow among populations

    Partial Genetic Turnover in Neandertals: Continuity in the East and Population Replacement in the West

    Get PDF
    Remarkably little is known about the population-level processes leading up to the extinction of the neandertal. To examine this, we use mitochondrial DNA sequences from 13 neandertal individuals, including a novel sequence from northern Spain, to examine neandertal demographic history. Our analyses indicate that recent western European neandertals (48 kyr) European neandertals. Using control region sequences, Bayesian demographic simulations provide higher support for a model of population fragmentation followed by separate demographic trajectories in subpopulations over a null model of a single stable population. The most parsimonious explanation for these results is that of a population turnover in western Europe during early Marine Isotope Stage 3, predating the arrival of anatomically modern humans in the region

    Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny

    Get PDF
    The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa. However, the irreversible post-mortem degradation2 of ancient DNA has so far limited its recovery—outside permafrost areas—to specimens that are not older than approximately 0.5 million years (Myr). By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I, and suggested the presence of protein residues in fossils of the Cretaceous period—although with limited phylogenetic use. In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch, using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia). Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck’s rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel—which is the hardest tissue in vertebrates, and is highly abundant in the fossil record—can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation

    Association studies on 11 published colorectal cancer risk loci

    Get PDF
    Colorectal cancer (CRC) is the third most common cancer type in the Western world. Over one million patients are diagnosed worldwide yearly. A family history of CRC is a major risk factor for CRC. The total genetic contribution to disease development is estimated to be 35%. High-risk syndromes caused by known genes such as familial adenomatous polyposis (FAP) and Lynch Syndrome (LS) explain less than 5% of that number. Recently, several genome-wide association studies (GWAS) have independently found numerous loci at which common single-nucleotide polymorphisms (SNPs) modestly influence the risk of developing colorectal cancer. In total, germline mutations in known genes and moderate- and low risk variants are today suggested to explain 10-15% of the total genetic burden. Hence, predisposed genetic factor are still left to be found. The aim of paper I was to investigate if 11 published loci reported to be associated with an increased or decreased risk of colorectal cancer could be confirmed in a Swedish-based cohort. The cohort was composed of 1786 cases and 1749 controls that were genotyped and analyzed statistically. Genotype– phenotype analysis, for all 11 SNPs and sex, age of onset, family history of CRC and tumor location, was performed. Of 11 loci, 5 showed statistically significant odds ratios similar to previously published findings. Most of the remaining loci showed similar OR to previous publications. Four statistically significant genotype–phenotype associations were reported. The aim of paper II was to further study these 11 SNPs and their possible correlation with morphological features in tumors. We analyzed 15 histological features in 1572 CRC cases. Five SNPs showed statistically significant associations with morphological parameters. The parameters were poor differentiation, mucin production, decreased frequency of Crohn-like peritumoral reaction and desmoplastic response. The aim of paper III was to identify new CRC loci using a genome wide linkage analysis. We used 121 non-FAP/LS colorectal cancer families and genotyped 600 subjects using SNP array chips. No statistically significant result was found. However, suggestive linkage was found in the parametric analysis. This was observed in a recessive model for high-risk families, at locus 9q31.1 (HLOD=2.2) and for moderate-risk families, at locus Xp22.33 (LOD=2.2 and HLOD=2.5). Using families with early-onset, recessive analysis suggested one locus on 4p16.3 (LOD=2.2) and one on 17p13.2 (LOD/HLOD=2.0). Our linkage study adds support for the previously suggested region on chromosome 9 and suggests three additional loci to be involved in colorectal cancer risk. It is debated whether CRC is a single entity or two different entities, colon- and rectal cancer. Studies have recognized their molecular differences. The aim of paper IV was to identify novel colon- and rectal loci. We performed a genome wide linkage analysis using 32 colon- and 56 rectal cancer families. No LOD or HLOD score above three was observed. However, results close to three could be demonstrated. A maximum HLOD= 2.49 at locus 6p21.1-p12.1 and HLOD= 2.55 at locus 18p11.2 was observed for the colon- and rectal cancer families respectively. Exome sequencing was done, on colon and rectal patients, in these regions of interest. We report 25 variants mutated in family members on chromosome 6 and 27 variants on chromosome 18. Further studies are ongoing to elucidate the importance of these variants
    • 

    corecore